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We present an approach to the determination of causal connectivities
and part of the kinetics of complex reaction systems. Our approach is
based on analytical and computational methods for studying the
effects of a pulse change of concentration of a chemical species in a
reaction network, either at equilibrium or in a nonequilibrium sta-
tionary state. Such disturbances generally propagate through a few
species, depending on the values of the kinetic coefficients, before
being broadened and dissipated. This short range gives a local probe
of the kinetics and connectivity of the reaction network. The range of
propagation also indicates species to perturb in further experiments.
From piecing together these local connectivities, the global structure
of the network can be constructed. The experimental design allows
deduction of both reaction orders and rate constants in many cases.
An example of the usefulness of the approach is illustrated on a model
of a part of glycolysis.

S tandard methods used for the study of the structure of reaction
networks include determination of the stoichiometry and ki-

netics of individual steps followed by hypothesizing reaction mech-
anisms and testing them against such measurements; perturbations
of reaction systems with first-order kinetics to determine the
constant rate matrix (1); and introduction of radioactive tracers to
determine reaction connectivities (2). In addition, several ap-
proaches are used to infer causal relationships in genetic networks;
however, most of these techniques are applicable only to Boolean
networks (3–8). Our work has taken several different approaches
to this problem in nonequilibrium systems (9–15), all based on not
dissecting the system but maintaining all interactions. Using fluc-
tuating input concentrations, we have shown how correlations
among species measured in the entire system may be used to
construct distances among species and from this infer information
on the reaction pathway (11, 12). This correlation metric construc-
tion gives a hierarchy of influence in a system and identifies weakly
coupled subsystems; causal connectivities can be obtained with
more difficulty. The methods outlined in the present paper give
causal reaction connectivities of measured species and regulatory
features of a reaction network through analyses of responses of a
system to pulse perturbations. For these techniques, the concen-
trations of species affected by a given pulse need to be measured in
time. The measurement resolution required, both in concentration
and time, depends on the stationary state concentration values, the
rates of reaction, and the connectivity of the reaction network.
However, adequate estimates of concentration detection levels may
be based on stationary state values, and estimates of time resolution
levels may be based on the time of appearance of extrema after a
pulse perturbation. Typically, a modest number of time measure-
ments, often 10 or fewer, is sufficient to approximate extrema
locations and values. From these measurements, both reaction
orders and rate constants of an empirical rate equation may be
deduced in many cases. The global structure of the reaction network
is obtained by piecing together these local connectivities. We start
with straightforward examples to show the simplicity of the ap-
proach and then indicate the applicability to complicated cases. An
example of the usefulness of the approach is illustrated on a model
of a part of glycolysis.

The number of species that need to be pulsed to deduce the
causal connectivities of the species, and hence the reaction
pathway, depends on the complexity of the reaction system; we
do not address the issue of rules applicable to this point. At most,
all the species of the system need to be pulsed, which will lead
to all connectivities, but frequently fewer than all are necessary.
We illustrate in the Appendix how connectivity may be obtained
by using few perturbations in a simple example.

Method and Theory
The application of the impulse perturbation method to a reaction
network consists of changing the concentration of a given species
over a short time and then observing the concentration responses
X induced in it and other species. A plot of the deviation in
concentration from the stationary state value, X � Xs, against
time shows that for unbranched chains of reactions, the (first)
extrema in the concentration of species are ordered along the
time axis with decreasing amplitude according to the number of
reaction steps separating that species from the initially perturbed
species. Pulses propagate strongly, i.e., with large amplitude, in
the direction of net reaction velocity and weakly in the reverse
direction. As an example, we consider the case of an unbranched
chain of reversible first-order reactions:
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For first-order reactions, it is convenient to study the relative
change in concentration u � (X � Xs) � Xs as a function of time,
u(t). These reduced variables exhibit relatively simple relations at
extrema. Equating the time derivative of ui(t) to zero at the time of
an occurrence of an extrema ti, we obtain a relation between the
extremum value ui(ti) and the values of the relative concentrations
of other species uj�i(ti). In the following, we often abbreviate the
extremum value as ui

* and omit explicit reference to time ti. From
the deterministic kinetic equations for Eq. 1, we obtain

u*i � ui�ti� � �ui � 1�ti� � �1 � ��ui � 1�ti�, [2]

where the coefficient � is less than one,

� �
jf

jT
� 1; [3]

jf � ki�1Xi�1
s is the steady state forward flow into Xi; and jT � jf �

jr is the total flow into Xi. This relation shows that a maximum in
ui occurs between the curves for the preceding and succeeding
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species; i.e., in addition to time ordering of extrema, the values at
maxima of (relative deviations of) species are also ordered accord-
ing to the number of reaction steps separating that species from the
initially perturbed species. The usefulness of these relations follows
from their geometric interpretation and independence from rate
values. Measurements to investigate connectivity of species through
reactions need only determine times of occurrences of extrema and
concentration values of species at them. Fig. 1a shows the propa-
gation of a pulse following a pulse perturbation of the first species
X1 in the chain of reactions. Using relative deviations of concen-
trations, we verify that maxima, as well as values at maxima, are
ordered according to the number of reaction steps separating that
species from the initially perturbed species. The effect of perturbing
a species in the middle of the chain is shown in Fig. 1b. In this case,
the pulse propagates with large amplitude in the direction of the
overall reaction velocity and weakly in the opposite direction. For
segments of systems in which there is not a large net reaction
velocity, e.g., for subsystems close to equilibrium, a pulse pertur-
bation induces extrema in neighboring species that are similar in
magnitude: a pulse propagates equally in both directions away from
the perturbation source.

More complicated mechanisms are studied through an
analysis of times and values of extrema in concentration
changes of species. These values give information about local
connectivities and kinetics (e.g., feedback, higher-order kinet-
ics). Several observations, which often hold, may be used as
guidelines in the initial construction of connectivities of
species in a reaction network. (i) The time of an extremum
increases as the number of reaction steps separating that
species from the initially perturbed species increases, unless
some species act as effectors in distant reactions. (ii) Con-
versely, the initial curves of concentration changes of a species
with time approach the time axis as the number of reaction
steps separating that species from the initially perturbed
species increases (in the absence of effectors). (iii) Species that
are directly connected through reactions to the initially per-
turbed species exhibit nonzero initial slopes. (iv) Species that
are not directly connected through reactions to the initially
perturbed species exhibit zero initial slopes. (v) All responses
are positive deviations from the stationary state unless there
is a feedback, feedforward, or higher-order (�1) kinetic step.
(vi) For short times, prior to the exit of material from the pulse
to the surroundings of the reaction system, the concentration
change of the pulse is conserved: the sum of deviations of
concentrations (weighted by stoichiometric coefficients) must
be constant and equal to the change in concentration of the
initial pulse. This property is useful in confirming that all
species produced from the pulse through reactions have been
detected and can help in determining correct stoichiometric
coefficients. (vii) When it is possible to identify the rate

expressions for reaction steps, then kinetic constants may be
estimated from the values of the concentrations of species at
an extremum. In the above example, the value of �, Eq. 3, may
be estimated from extrema, which gives the ratio ki�1�k�i.

We have investigated the effects of some geometrical arrange-
ments and rate expressions on the conditions for extrema. The
geometries considered include (i) straight chains, (ii) branched
chains, i.e., several chains converging and diverging from a given
species, (iii) positive and negative feedback and feedforward,
and (iv) a cycle of reactions. The rate expressions treated
include: (i) first- and second-order kinetics, (ii) generalized
mass-action kinetics (for small perturbations), and (iii) uni-uni
enzyme catalyzed reactions (Michaelis–Menten). The analytic
solutions for these simplify considerably for the case of irrevers-
ible reactions.

First-Order Kinetics. We consider a set of reactions that may be
described by first-order or pseudo-first-order kinetics; e.g., re-
versible Michaelis–Menten kinetics in which the substrate con-
centration is low. Specifically, the reactions either produce or
consume a species X:
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Then the rate expression for X is

d
dt

X � �
i � 1

n

kiXi � X �
i � 1

n

k�i. [5]

The evolution of the relative deviation from the stationary state,
u � (X � Xs) � Xs, may be written

1

�
i � 1

n k�i

d
dt

u � �
i � 1

n

�iui � u, [6]

where �i � ji�jT, ji � kiXi
s, and jT � �ji. We note that the sum

of coefficients is equal to one: ��i � 1. An extremum in u occurs
when the above derivative with respect to time is zero, which for
this system results in the expression:

u* � �
i � 1

n

�iui. [7]

This abbreviated form for the relation between values of vari-
ables at an extremum of u omits explicit inclusion of the time
variable; implicit in this expression is the evaluation of all
variables at time t* at which du�dt � 0.

From this expression, we have the result that an extremum
u* occurs within (the convex hull of) the curves ui for the
species that produce X. For example, in the case of a chain of
irreversible reactions X1 3 X 3 X2, the extremum u* occurs
on u1; the curve for the species that produces X. Another
example is the case of irreversible reactions in which two
species, X1 and X2, separately produce X; and X produces one
product X3. Then u* occurs between the curves for the species
that produce X, u1, and u2, and at such a point the coefficients
sum to one: �1 � �2 � 1.

Fig. 1. Plots of the relative deviation in concentration from the stationary
state versus time for all the species of the mechanism in Eq. 1. The maxima are
ordered according to the number of reaction steps separating that species
from the initially perturbed species. In b, the pulse propagates with large
amplitude in the direction of the overall reaction velocity and weakly in the
opposite direction.

Vance et al. PNAS � April 30, 2002 � vol. 99 � no. 9 � 5817

CH
EM

IS
TR

Y



Fig. 2 shows a diagram of converging chains of irreversible
first-order reactions. Perturbation of species X1 causes a pulse to
propagate through the sequence X2; X3; X4; X5, Fig. 3a; perturbation
of species X8 causes the pulse to propagate through the sequence
X7; X6; X3; X4; X5, Fig. 3b. In each of these figures, we note that aside
from the branch species X3, the maximum value (of the relative
deviation) of a species occurs on the curve for the species that
produces it. For the branch species, the maximum value of u3 is
equal to �i ui, where i is 2 or 6, depending on whether the pulse
propagate through species X2 or X6, i.e., whether X1 or X8 is
perturbed. The sum of the coefficients �2 � �6 is equal to one and
is a useful check on the correct number of converging chains at X3.
These relations may be extended to networks of nearly irreversible
reactions, where they hold to within a correction that is the order
of the reverse rate divided by the forward rate.

Cyclic reaction systems may be investigated by using the above
methods. Such systems are composed of chains of reactions that
form a closed loop; inputs and outputs are branch points of the loop.
Using Eq. 7, the linear and branch points of the system may be
identified through appropriate perturbations. Another class of
systems for which the above methods and results are directly
applicable is those in which radioactive tracer species are intro-
duced. If a tracer is added so that the total concentration of the
species is constant, then the response of the tracer obeys first-order
kinetics.

Generalized Mass-Action Kinetics. The propagation of pulses, and in
particular the conditions for extrema, may also be described for
higher-order reaction kinetics.

For the case of two different species reacting, we take the
following reaction scheme:
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The condition for an extremum in one of the species ub involved
in the bimolecular reaction may easily be derived. For small
reverse velocities, j�1�jT 		 1; the condition reduces to

u*b � �
�ua

1 � �ua
, [9]

where

� �
j1

jT
�

1
1 � k�bXb

s�k1Xa
sXb

s � 1, [10]

and j�1 � k�1X2
s , jT � j�b � j1 � k�bXb

s � k1Xa
s Xb

s . If the
second-order reaction rate is much greater than the rate of the
other reaction that destroys Xb, then we have j�b�j1 		 1, and
Eq. 9 reduces to u*b � �ua�(1 � ua). The approximate condition
for an extremum in the product u2, for small reverse rate
coefficient j�b�j1 		 1

u*2 � ua � ub � uaub. [11]

To illustrate an application of these conditions, we consider an
impulse change of concentration of species Xa in Eq. 8. Following
this perturbation, the concentration of species Xb decreases below
the stationary state value and reaches a minimum value given by Eq.
9. The concentration of the product of the reaction increases and
reaches a maximum value given by Eq. 11. For small perturbations,
the maximum value u*2 is the sum of ua and ub.

Generalized mass-action kinetics may be treated similarly. We
consider the case in which the creation and consumption of a
species X1 are each single reactions with power rate laws (we
assume the reverse rates of these reactions are small):

d
dt

X1 � �1k1Xa
�aXb

�b · · · X1
�l � �2k2X1

�1X2
�2 · · · X�

��. [12]

The sets of species that produce X1; (Xa, Xb, . . . , Xl); and the
set of products, (X1, X2, . . . , Xn); are not necessarily disjoint.
These types of rate equations, called S-systems, have been
applied to the analysis of biochemical pathways and genetic
networks (16). Then for small deviations from the stationary
state, the equation may be linearized, which leads to the follow-
ing condition at an extremum in u1 (du1�dt � 0)

u*1 �
1

�1

��aua � · · · � �lul� � ��2u2 � · · · � ��u���. [13]

That is, as in the case of irreversible first- and second-order kinetics,
at an extremum the values of the reduced variables are linearly
related with coefficients determined only by the exponents �. For
these and similar systems, the exponents � may be determined
through experiments that probe the effects of perturbing different
species that are involved in reactions that create X1.

We illustrate the application of this relation by using a sequence
of first- and second-order reactions given in Fig. 4. In this example,

Fig. 2. Chemical reaction mechanism for converging chains of irreversible
first-order reactions. The rates of production of species X1 and X8 are held
constant at 0.1 and 0.5, respectively. [Xi]0 denotes the stationary state con-
centration of species Xi.

Fig. 3. Plots of relative deviation in concentration versus time for species of
the mechanism in Fig. 2. In a, a perturbation of the concentration of species X1

causes a pulse to propagate through the sequence X2; X3; X4; X5; in b,
perturbation of species X8 causes the pulse to propagate through the se-
quence X7; X6; X3; X4; X5. With the exception of the branch species X3, the
maximum value (of the relative deviation) of a species occurs on the curve for
the species that produces it. For the branch species, the maximum value of u3

is equal to �i ui, where i is 2 or 6, depending on whether the pulse originates
from species X2 or X6. The coefficients �2 and �6 are the relative contributions
of the branch fluxes to the total flux: �2 � j1�(j1 � j2) and �6 � 1 � �2.
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where a single species is produced and destroyed at each reaction
step, the above relation simplifies to u*1 � (�a��1)ua. An impulse
perturbation of X1 results in the responses shown in Fig. 5. Con-
nectivities between species are reflected in the times of extrema of
the relative deviations: u2 follows u1, . . . , u8 follows u7. The relations
between the variables at extrema give ratios of exponents. For
example, X2 is produced through a first-order reaction involving X1
and consumed through a second-order reaction of X2. This results
in the relation u*2 � (�1��2)u1 � (1�2)u1 at an extremum in X2; i.e.,
the order of the second reaction is determined from the extremum
relation. The other relations are similarly determined at extrema of
Fig. 4 and are u*3 � 2u2 , u*6 � (1�2)u5, and u*7 � 2u6. Using these
relations along with other information, such as initial rate studies,
the rate coefficients ki may be determined.

Feedback and Feedforward. Feedback and feedforward effects
arise in chemical reaction networks from a variety of mecha-
nisms. The rate of a reaction may be either increased or
decreased by an effector species not directly involved in the
reaction; the location of this effector species in the network may
either precede (feedforward) or succeed (feedback) the reac-
tion. A general mechanism may be treated by linearizing the
equations about a stationary state. For these cases, absolute
deviations from the stationary state are more useful than relative
deviations, because the species directly affected by the reaction
show symmetric deviations. We consider an effector species Xeff
either promoting or inhibiting the reaction Xi 3 Xi�1, and all
reverse processes are assumed negligible. We assume a general

rate function f(Xi; Xeff) for the feedforward or feedback that has
nonzero derivatives with respect to Xi and Xeff at the stationary
state. Then the linearized rate equations are

d
dt


Xi � ai � 1
Xi � 1 � �ai
Xi � aeff
Xeff� [14]

d
dt


Xi � 1 � ai
Xi � aeff
Xeff � ai � 1
Xi � 1, [15]

where 
Xi denotes the deviation in concentration of species Xi
from the stationary state value and ai � 	f�	Xi, aeff � 	f�	Xeff.
If aeff � 0 (aeff 	 0), then Xeff acts as an activator (inhibitor) of
the reaction. The effector species Xeff and its influence on the
reaction may be identified through a (direct or indirect) pertur-
bation of the concentration of Xeff. After such a perturbation, for
short times such that changes in Xi; Xi�1, and Xi�1 are small in
comparison to 
Xeff, deviations in species Xi and Xi�1 are mirror
images about the time axis:

d
dt


Xi � �aeff
Xeff,
d
dt


Xi � 1 � aeff
Xeff. [16]

[Assuming 
Xeff and the coefficients a are O (1) and that

Xi(
t)�
Xf is small O (
), then 
t � O (
) for this relation to hold.]
The extrema are ordered with the extremum of 
Xi�1 occurring
before that of 
Xi, independent of the sign of aeff (assuming that Xeff
does not influence Xi�1 significantly, e.g., Xeff does not directly
produce Xi�1). This may be shown as follows: if aeff � 0, then ai 
Xi
� aeff
Xeff starts out positive, which implies a consumption of Xi by
Eq. 15, and decreases to zero at the minimum of 
Xi; Eq. 15 (the
influence of Xi�1 is negligible if it is not influenced directly by Xeff).
According to Eq. 16, 
Xi�1 initially increases, because ai 
Xi � aeff

Xeff � 0, and reaches a maximum value at the crossing of the
curves ai�1 
Xi�1 and ai 
Xi � aeff 
Xeff which occurs before the
minimum of 
Xi (at ai 
Xi � aeff 
Xeff � 0). Similarly, if aeff 	 0;
then ai 
Xi � aeff 
Xeff starts out negative and increases to zero at
the maximum of 
Xi; following the previous argument, the mini-
mum of 
Xi�1 occurs before the maximum of 
Xi. This ordering of
extrema allows the identification of the direction of the net reaction
velocity Xi 3 Xi�1.

An example of a system with positive feedback is shown in Fig.
6. The associated rate equations are integrated for a perturbation
in concentration of X1 and X7; the absolute deviation of concen-
tration from the stationary state is given in Fig. 7 a and b,
respectively. Fig. 7a shows maxima of species occurring in the order
of species in the chain of reactions X13 X8. Species X3 falls below
the stationary state value, which indicates a possible feedback effect
from one of the later species. A trial perturbation of X7, Fig. 7b,
shows that X3 and X4 are mirror images about the time axis for short
times, and their initial slopes are nonzero. These observations
indicate that X7 activates the reaction from X3 to X4 (the peak of X4
occurs before that of X3, implying that X3 precedes X4 in the
reaction sequence).

Enzyme-Catalyzed Reactions. Many segments of biochemical path-
ways may be modeled as unbranched chains consisting of enzyme-
catalyzed reactions. We concentrate on a chain in which the kinetics
are described by the irreversible Michaelis–Menten equation:

Fig. 4. Chemical reaction mechanism of a linear chain of coupled first- and
second-order reactions. The order of a reaction is given by the stoichiometry.

Fig. 5. Plots of relative deviation in concentration versus time for species of
the mechanism in Fig. 4. A pulse perturbation of the concentration of species
X1 results in the responses shown. The pulse propagates through the chain
with maxima of relative deviations of species ordered according to the posi-
tions of species in the chain. From the plot we find the relations: u*2 � (1�2)u1 ,
u*3 � 2u2, u*6 � (1�2)u5, and u*7 � 2u6; and u*7 � 2u6; the values of these
coefficients may be related to the orders of the reactions through Eq. 14.

Fig. 6. Chemical reaction mechanism illustrating positive feedback in a
linear chain of irreversible first-order reactions. The rate of production of
species X1 is held constant at vf.
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The rate of the relative deviation of S2 is given by

S2
s d
dt
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� �1 � u1�S1
s �Km1
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�
Vm2

� �1 � u2�S2
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1 � �1 � u2�S2
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. [18]

For small deviations from the stationary state, we linearize the
equations, use the stationary state condition for the relation
between S1

s and S2
s , and obtain the following expression for an

extremum in u2:

u*2 �
1 � S2

s �Km3

1 � S1
s �Km1

u1, [19]

where Km1 � (k�1 � k2)�k1; Km3 � (k�2 � k3)�k2: We see that,
unlike the case of first-order reactions, the value of u*2 may be
greater or less than u1. If the concentrations of the substrates are
much smaller than the corresponding Michaelis constants, i.e.,
S1

s �Km1 		 1; S2
s �Km3 		 1, then kinetics reduce to first-order,

and the above relation becomes that for the case of irreversible
first-order kinetics, u*2 � u1.

An Example: The Glycolytic Pathway
We present an application of some of the methods outlined
above to a model of the glycolytic pathway. The model we use
includes many of the known activations and inhibitions of
enzymes by metabolites, Fig. 8. The HKase reaction is assumed
to operate at constant rate, which neglects the influence of ATP
and glucose 6-phosphate. The concentrations of glucose, lactic
acid, and the total adenine nucleotide pool are kept constant; the
AKase reaction is assumed to be at equilibrium. Prior to the
application of a pulse, the system is in a nonequilibrium station-
ary state. We refer to ref. 17 for details concerning the assump-
tions and the derivation of rate equations. There are five
independent variables: fructose 6-phosphate (F6P), fructose
1,6-bisphosphate (FDP), phosphoenolpyruvate (PEP), pyruvate
(PYR), and ATP; in the following, we label the variables 1–5,
respectively. Our parameter values are the same as those in ref.
17, except for the input rate, which we take as V � 1.5 mM�min.

Fig. 9 a–d shows time series for the absolute deviations of species
with impulse perturbations of F6P (1), FDP (2), PEP (3) and ATP
(5); solutions were obtained from numerical integration of the
model equations. In Fig. 9a, the response to an impulse perturba-
tion of (1) is shown. The variables exhibit extrema in the following
order in time 2, 3, 4; the variable 5 exhibits both a minimum and a
maximum. Variables 3 and 4 have zero initial slopes, which is

Fig. 8. Chemical reaction mechanism for an abbreviated model of the glycolytic
pathway.Themechanismincludesmanyof theknownactivationsand inhibitions
of enzymes by metabolites. Broken lines indicate activation � or inhibition � of
enzymes by metabolites. The abbreviations for the enzymes are hexokinase (HK),
phosphofructokinase (PFKase), and pyruvate kinase (PKase); the abbreviations
for the five independent variables are fructose 6-phosphate (F6P), fructose 1,6-
bisphosphate (FDP), phosphoenolpyruvate (PEP), pyruvate (PYR), and ATP (in the
following figure, these are labeled 1–5, respectively).

Fig. 9. Plots of time series for the absolute deviations in concentrations of species of
the mechanism in Fig. 8 with impulse perturbations of F6P (1), FDP (2), PEP (3) and ATP
(5). From an analysis of the responses to these perturbations, we deduce: 1 produces 2,
2 produces 3, 2 activates the conversion of 3 to 4, 3 produces 4, and 5 is consumed in the
conversion of 1 to 2 (with the stoichiometric ratio of species 5 to species 2 being 1:1); the
conversion of 1 to 2 is highly irreversible; 5 is produced at the same rate as 4 in the
reaction 3 to 4; 5 is consumed at the same rate as 2 is produced, which indicates that 5
is a cosubstrate for the reverse reaction of 3 to 2; 5 inhibits the reaction of 1 to 2 and the
reactionof3to4. Ineachoftheresponseplots, theperturbation is10%ofthestationary
state value; responses are approximately several percent of the stationary state values
or larger, except X5, which is in a and b (the stationary state values of X1 � X5 are 0.091,
0.200, 2.70, 3.00, and 30.0, respectively).

Fig. 10. Plots of time series for sums of deviations in concentrations for the species
of the mechanism in Fig. 8. In a, the concentration of species X1 is perturbed; in b,
the concentration of species X3 is perturbed. Plot a shows that the sum of the
deviations 
X1 � 
X2 � (
X3 � 
X4)�2 is slowly decaying in time. From this
conservation, we infer that species 2 produces two molecules of species 3, which
produces species 4. Plot b shows a similar transient conservation of mass in species
2, 3, and 4 following a perturbation of 3; the initial flow is from 3 to (1�2) 2 and over
a longer time from 3 to 4.

Fig. 7. Plots of deviation in concentration 
X from the stationary state value
versus time for the species of the mechanism in Fig. 6. In a, a perturbation of the
concentration of species X1 causes a pulse to propagate through the linear chain
X2, X3, � � �, X8; the deviation of species X3 falls below the stationary state value,
which indicates a possible feedback effect from one of the species farther in the
chain. In b, a perturbation of species X7 causes the initial slopes of the deviations
inX3,X4, andX8 tobenonzeroandthedeviations inX3 andX4 tobemirror images
about the time axis (for short times); these observations indicate that X7 activates
the reaction from X3 to X4 (because the peak of X4 occurs before that of X3,
implying that X3 precedes X4 in the reaction sequence) and is the precursor to X8.
The maximum deviations are approximately 10% of the stationary state values or
larger, except X4 in b, which is 2% (the stationary state values of X1 � X8 are
0.05, 0.0125, 0.0166, 0.1, 0.0166, 0.025, 0.01, and 0.1, respectively).
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consistent with their production from 2: the deviation in 2 starts at
zero, which implies that the velocity of 2 into any of its products, e.g.,
(3, 4), is initially zero. Also, for short times, the deviations in 3 and
4 are mirror images about the time axis, which indicates that the
conversion between 3 and 4 is affected by 2 (if 1 were to affect this
conversion, then the initial slope of 3 and 4 would be nonzero). A
separate perturbation of 4, which is not shown, does not produce a
significant response in 3; therefore, it is inferred that 3 produces 4.
A verification that 1 is converted to 4 is shown in Fig. 10a, where
the sum of the deviations in concentrations 
X1 � 
X2 � (
X3 �

X4)�2 is slowly decaying in time. This indicates an approximate
conservation of mass among these species. We note from this
conservation that each molecule of species 2 produces two mole-
cules of species 3, which in turn produces (one molecule of) species
4. The initial slope of 5 in Fig. 9a is equal to minus that of 2, which
shows that 5 is consumed in equal numbers to 2 produced. In
summary, from the responses to a perturbation of 1 (and 4), we have
the results: 1 produces 2, 2 produces 3, 2 activates the conversion of
3 to 4, 3 produces 4, and 5 is consumed in the conversion of 1 to 2
(with the stoichiometric ratio of species 5 to species 2 being 1:1).

Fig. 9b shows responses to an impulse perturbation of species 2.
The initial slopes of 3 and 4 are nonzero, which indicates that 2 has
a direct effect on (activates) the conversion of 3 to 4; the initial
effect of 2 is to activate the reaction from 3 to 4 (and slowly produce
3). The minimum in 3 precedes the maximum in 4 following a
perturbation of 2, which indicates that 2 directly produces 3 and
shifts the minimum of 3 (which would occur after the maximum in
4 without this direct production) to an earlier time. Species 1 does
not respond to the perturbation, which shows that the conversion
of 1 to 2 is highly irreversible. The initial slope of species 5 is equal
to that of 4, which shows that 5 is produced at the same rate as 4
in the reaction 3 to 4. The new information from this perturbation
is the production of 5 in this latter reaction.

Fig. 9c shows responses to an impulse perturbation of species
3. Both 2 and 4 have nonzero initial slopes, which shows that 3
produces both 2 and 4. The small amplitude of 2 indicates that
the reaction 2 to 3 is reversible. New information is also
contained in the initial time series for 2 and 5: 5 is consumed at
the same rate as 2 is produced, which indicates that 5 is a
cosubstrate for the reverse reaction of 3 to 2. Fig. 10b shows a
transient conservation of mass in species 2, 3, and 4; the initial
f low is from 3 to (1�2) 2 and over a longer time from 3 to 4.

Fig. 9d shows responses to an impulse perturbation of species
5. The minus signs in the figure denote reflection of the
deviations about the time axis. The increase of 1 and decrease
of 2 indicate that 5 inhibits the reaction 1 to 2, without affecting
the rate of 2 to 3. The opposite rates of 3 and 4 indicate that 5
also inhibits the conversion of 3 to 4.

From the above analysis of the propagation of pulses in the
glycolytic pathway, we may construct the reaction scheme shown in
Fig. 11. This diagram captures the topology of the reaction network
and many of the effectors. Further studies of the adenine nucleo-
tides would help determine the role of the other effector (AMP)
and other substrates, such as ADP, for each reaction.

Discussion
From an analysis of responses of reaction systems to pulse pertur-
bations in concentrations of chemical species (applied to stationary
state), we are able to construct the dominant kinetic structure of
reaction networks. The level of information obtained depends on
the number of species that are accessible to measurement and
external perturbation. While correct deductions about the order of
a particular reaction necessitates all involved species be identified
and measured, much of the network structure can be obtained with
less information. For example, in some biochemical systems, the
kinetics of reactions may be treated as first-order or pseudo
first-order; in these cases, identification of ordering of species in
linear chains of reactions and branch points follows from analysis of
extrema following appropriate perturbations. In these systems, it is
also possible to determine the location of species that have not been
measured in the network and the number of chains converging or
diverging from a branch point from locations of extrema and sums
of relative fluxes, respectively. Blind tests of the methods presented
here are needed. These studies will be performed on realistic
models of biological pathways and should help determine the
numbers of measurements needed to construct networks of a given
level of complexity.

Appendix
Much can be learned, by simple deduction, from measuring the
responses to a pulse perturbation of a given species in a reaction
mechanism. Consider the following case: a flow from the main
branch into a side branch given in Fig. 12. Perturbations of only
three chemical species, X1, X2, X6, and calculations of the
responses of the other species suffice to deduce the causal
connectivities of the species and the reaction mechanism.
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tions. The rates of production of species X1 are held constant at 0.1.
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